

FACOLTÀ DI INGEGNERIA DELL' UNIVERSITÀ DI PADOVA

DIPARTIMENTO DI FISICA TECNICA

VIA VENEZIA, 1 I - 35131 PADOVA TEL.: +39 049 827 68 97/98 FAX: +39 049 827 68 96

Certificato nº 732

DETERMINAZIONE DEL COEFFICIENTE DI ASSORBIMENTO SONORO IN CAMERA RIVERBERANTE SECONDO LE NORME UNI EN ISO 354. UNI EN ISO 11654 E UNI EN 1793-1

Produttore: Esse Solai S.r.l. - Strada delle Fornaci, 13 36031 Vivaro di Dueville (VI).

Identificazione del prodotto: pannelli mod. "Lastra Focus" composti da calcestruzzo, spessore 5 cm, e

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Coefficiente di assorbimento acustico [-]

argilla espansa, spessore 2 cm, con pittura semilavabile per interni.

Richiedente: Ri.Cert. S.p.A. - Viale del Lavoro, 6 36030 Monte di Malo (VI)

Campione in prova montato da: Esse Solai S.r.l.

Data della prova: 23/11/2011.

Descrizione del campione e della disposizione nell'ambiente di prova: vedi pagina 2.

Freq.	T ₁ [s] camera	T ₂ [s] camera	A [m²]	α _s [/] (**)
	vuota	con	.,	\
		campione		
100	11,37	10,47	0,25	0,02
125	13,66	11,13	0,56	0,05
160	10,48	8,71	0,66	0,05
200	10,96	8,64	0,83	0,07
250	10,80	8,10	1,05	0,09
315	10,47	7,27	1,44	0,12
400	9,72	7,29	1,18	0,10
500	9,53	6,91	1,37	0,11
630	9,46	6,67	1,52	0,13
800	9,08	6,18	1,77	0,15
1000	8,35	5,48	2,14	0,18
1250	7,70	4,61	2,94	0,25
1600	6,96	3,82	3,97	0,33
2000	5,77	2,98	5,38	0,45
2500	4,87	2,55	6,10	0,51
3150	4,08	2,25	6,38	0,53
4000	3,21	2,10	4,90	0,41
5000	2,34	1,89	2,28	0,19

(*) L'area di assorbimento sonoro equivalente A. del campione in prova. è calcolata

$$A = 55, 3\frac{V}{c} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) - 0,921V \left(a_2 - a_1 \right)$$
 [m²]

V[m³] è il volume della camera riverberante vuota;

c [m/s] è la velocità del suono nell'aria;

 T_1 [s] è il tempo di riverberazione della camera riverberante vuota:

T₂ [s] è il tempo di riverberazione della camera riverberante dopo

l'introduzione del campione in prova-

 a_1 [-] è il coefficiente di attenuazione della camera riverberante vuota in

accordo con la ISO 9613-1:

 a_2 [-] è il coefficiente di attenuazione della camera riverberante dopo l'introduzione del campione in prova in accordo con la ISO 9613-1

(**) Il coefficiente di assorbimento sonoro α_s [-]. è calcolato mediante la formula

$$\alpha_s = \frac{A}{S}$$
 [-]

A [m²] è l'area di assorbimento sonoro equivalente; S [m2] è l'area del campione in prova

Il Direttore del Dipartimento Il Responsabile del Laboratorio Logsperimentatore

400 200 630 800 000 250

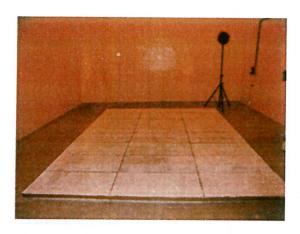
3150 2500

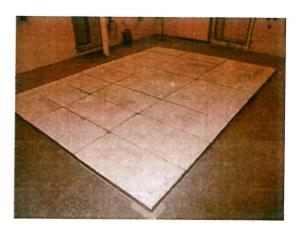
000

Frequenza [Hz]

FACOLTÀ DI INGEGNERIA DELL'UNIVERSITÀ DI PADOVA

DIPARTIMENTO DI FISICA TECNICA


Coefficiente di assorbimento acustico ponderato (UNI EN ISO 11654):


- $\alpha_{\rm w} = 0.20$
- Classe di assorbimento acustico: E

Indice di valutazione dell'assorbimento acustico (UNI EN 1793-1):

- $DL_{\alpha} = 1 \text{ dB}$
- Categoria della prestazione di assorbimento: A1

Disposizione del campione nell'ambiente di prova: conforme alle prescrizioni contenute nella norma UNI EN ISO 354.

Descrizione del campione in prova: pannelli mod. "Lastra Focus", dimensione 50 cm x 100 cm composti da calcestruzzo (spessore 5 cm, densità 2370 kg/m³) e argilla espansa (spessore 2 cm, densità 580 kg/m³). Realizzazione di pittura semilavabile per interni sullo strato di argilla espansa. Riempimento tra i pannelli effettuato mediante sigillante siliconico.

Condizioni di prova:

Superficie dell'elemento in prova:	12.0	m ²	
Temperatura media dell'aria nella camera riverberante:		°C	
Umidità media dell'aria nella camera riverberante:	50	%	
Pressione atmosferica:	101,3	kPa	

Ambiente di prova: camera riverberante del Dipartimento di Fisica Tecnica; volume 211,2 m³; superficie 214,38 m².

Strumentazione utilizzata: Notebook IBM T30, scheda audio DIGIGRAM VXpocket2, software Brüel & Kjær 7841 DIRAC, microfono G.R.A.S. type 40AQ (S/N 41471), preamplificatore G.R.A.S. type 26CA (S/N 57851), condizionatore di segnale 01dB OPUS (S/N 20225), amplificatore di potenza Brüel & Kjær 2716, sorgente sonora omnidirezionale Brüel & Kjær 4295.

Osservazioni dello sperimentatore: misurazioni effettuate con 4 postazioni microfoniche e 4 posizioni della sorgente in camera riverberante, con 2 campionamenti per ogni combinazione di postazione microfonica e sorgente.

Note: i risultati di prova contenuti nel presente rapporto si riferiscono esclusivamente al campione provato; nessuna deviazione dai metodi di prova dichiarati.
